Quantitative information extraction from gas sensor data using principal component regression
نویسندگان
چکیده
منابع مشابه
Extracting Information from Interval Data Using Symbolic Principal Component Analysis
We address the definition of symbolic variance and covariance for random interval-valued variables, and present four known symbolic principal component estimation methods using a common insightful framework. In addition, we provide a simple explicit formula for the scores of the symbolic principal components, equivalent to the representation by Maximum Covering Area Rectangle. Furthermore, the ...
متن کاملRobust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملForecast comparison of principal component regression and principal covariate regression
Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. This paper compares two methods for dealing with many predictors, that is, principal component regression (PCR) and principal covariate regression (PCovR). The forecast performance of these methods is compared by simulating data from factor models and from regression models. The simulations show that, ...
متن کاملBootstrapping Principal Component Regression Models
Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
سال: 2016
ISSN: 1300-0632,1303-6203
DOI: 10.3906/elk-1309-96